Phospho-mTOR (Ser2448) cellular kit
Convenient, fast assay quantifying Phoshpo-mTOR (Ser2448) modulation
-->
This HTRF kit enables the cell-based quantitative detection of ATG14 as a readout of the autophagy pathway, and can be combined with our Phospho-ATG14 Ser 29 kit.
ATG14, Autophagy related protein 14, or BAKOR for Beclin 1-associated autophagy-related key regulator, is a key player in the autophagosome nucleation step in macroautophagy. Upon cellular stress, the nutrient/energy-sensitive sensors mTOR and AMPK lead to the activation of the ULK1 complex which allows phosphorylation of ATG14 on Serine 29, in turn enabling the downstream activation of the PIK3C3 autophagosome nucleation complex.
Human HCT116 cells were plated in a 96-well culture-treated plate (200,000 cells/well) in complete culture medium, and incubated overnight at 37°C, 5% CO2. The cells were treated with a dose-response of MRT68921 for 4h at 37°C, 5% CO2. After culture medium removal, cells were then lysed with 25 µl of supplemented lysis buffer #4 (1X) for 30 min at RT under gentle shaking. After cell lysis, 14 µL of lysate were transferred into a 384-well low volume white microplate, and 2 µL of Activation Buffer, then 4 µL of the HTRF Total-ATG14 or Phospho-ATG14 (Ser 29) detection reagents were added. The HTRF signal was recorded after an overnight incubation at room temperature.
As expected, MRT68921, a potent and dual autophagy kinase ULK1/2 inhibitor, repressed ULK1 activation, reducing autophagy initiation machinery, and leading to a dose-dependent decrease in ATG14 phosphorylation without any significant effect on the expression level of the ATG14 total protein.
Cell lysates from various human cell lines were cultured at different densities and lysed in supplemented LB4 lysis buffer.
After culture medium removal, cells were then lysed with appropriate volumes of supplemented lysis buffer #4 (1X) for 30 min at RT under gentle shaking. After cell lysis, 14 µL of lysates were transferred into a 384-well low volume white microplate, and 2 µL of Activation Buffer, then 4 µL of the HTRF Total detection reagents were added. The HTRF signal was recorded after an overnight incubation at room temperature.
As expected, the Total ATG14 assay detects the human protein, as is shown by significant positive signals in several human cell lines. This demonstrates the versatility of the assay.
Cellular Autophagy is a specialized degradation and recycling process that is instrumental for cell homeostasis, being activated in response to several different stresses. There are 3 types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Macroautophagy pathways involve several key steps: initiation, nucleation, elongation of phagophores complexes, then sequestration of cytoplasmic cargos with LC3-PE recruitment followed by fusion with lysosome yielding to cargo degradations.
Biogenesis of the autophagosome is controlled by sequential and concerted actions of the so-called autophagy related proteins, ATGs, which are activated and recruited to the ER and autophagosome membranes. The recruitment of the ULK1 complex is the first event in the initiation step. ULK1 is a Ser/Thr kinase which forms a complex with the Atg13, Atg101, and FIP200 proteins. This complex is the most upstream component of the core autophagy machinery and is therefore the key initiator of autophagy in mammalian cells. ULK1 is regulated by the key nutrient/energy-sensitive kinases mTOR and AMPK, which are both able to phosphorylate ULK1 on Serine 317 and Serine 556, and directly regulate its kinase activity.
The Activated ULK1 complex then binds ATG14 via ATG13, and phosphorylates ATG14 on Serine 29. The kinase activity of phosphorylated and activated ATG14 stimulates other proteins of the PIK3C3 complex (nucleation), that is responsible for the critical step of phosphorylation of phosphatidylinositols (PI) into phosphatidylinositol-3-phosphate (PI3P). This in turn is responsible for the formation of the initial phagosomal membrane structure and later allows fixation of LC3-II using other ATG proteins (ATG16/12/5 complex), generating a support for the elongation and closing steps.
As a result, phosphorylation of the ATG14 protein on serine 29 is a key early marker of the nucleation step in the engagement of the macroautophagic process.
HTRF cellular phospho-protein assays
Physiologically relevant results fo fast flowing research - Flyers
Best practices for analyzing brain samples with HTRF® phospho assays for neurosciences
Insider Tips for successful sample treatment - Technical Notes
Optimize your HTRF cell signaling assays on tissues
HTRF and WB compatible guidelines - Technical Notes
Best practices for analyzing tumor xenografts with HTRF phospho assays
Protocol for tumor xenograft analysis with HTRF - Technical Notes
Key guidelines to successful cell signaling experiments
Mastering the art of cell signaling assays optimization - Guides
Multi-tissue cellular modeling and anlysis of insulin signaling - Posters
HTRF® cell signaling platform combined with iCell® Hepatocytes
A solution for phospho-protein analysis in metabolic disorders - Posters
HTRF phospho-assays reveal subtle drug-induced effects
Detailed protocol and direct comparison with WB - Posters
A single technology for 2D cells, 3D cells, and xenograft models - Posters
PI3K/AKT/mTor translational control pathway - Posters
Universal HTRF® phospho-protein platform: from 2D, 3D, primary cells to patient derived tumor cells
Analysis of a large panel of diverse biological samples and cellular models - Posters
From 2D, 3D cell cultures to xenografts: A smart HTRF platform to maximize anticancer drug discovery
One technology across all samples - Application Notes
HTRF phospho assays reveal subtle drug induced effects in tumor-xenografts
Tumor xenograft analysis: HTRF versus Western blot - Application Notes
HTRF cell-based phospho-protein data normalization
Valuable guidelines for efficiently analyzing and interpreting results - Application Notes
HTRF phospho-total lysis buffer: a universal alternative to RIPA lysis buffers
Increased flexibility of phospho-assays - Application Notes
HTRF Alpha-tubulin Housekeeping kit
Properly interpret your compound effect - Application Notes
Simplified pathway dissection with HTRF phospho-assays and CyBi-felix liquid handling
Analyse of PI3K/AKT/mTor translational control pathway - Application Notes
How to run a cell based phospho HTRF assay
What to expect at the bench - Videos
Cell-based kinase assays in HTS ? potential and limitations for primary and secondary screening
In collaboration with Bayer - Scientific Presentations
Unleash the potential of your phosphorylation research with HTRF
A fun video introducing you to phosphorylation assays with HTRF - Videos
How to run a cell based phospho HTRF assay
3' video to set up your Phospho assay - Videos
Guidelines for Cell Culture and Lysis in Different Formats Prior to HTRF Detection
Seeding and lysing recommendations for a number of cell culture vessels. - Technical Notes
Methodological Aspects of Homogeneous Time-Resolved Fluorescence (HTRF)
Learn how to reduce time and sample consumption - Application Notes
Assessment of drug efficacy and toxicity by combining innovative technologies
Combination of AlphaLISA®, HTRF®, or AlphaLISA® SureFire® Ultra™ immunoassays with the ATPlite™ 1step cell viability assay - Application Notes
Product Insert ATG14 Total Kit / 64ATG14TPEG-64ATG14TPEH
64ATG14TPEG-64ATG14TPEH - Product Insert
Safety Data Sheet (DEU) ATG14 Total Kit / 64ATG14TPEG
64ATG14TPEG - Safety Data Sheet
Safety Data Sheet (ELL) ATG14 Total Kit / 64ATG14TPEG
64ATG14TPEG - Safety Data Sheet
Safety Data Sheet (FRA-FR) ATG14 Total Kit / 64ATG14TPEG
64ATG14TPEG - Safety Data Sheet
Safety Data Sheet (ITA) ATG14 Total Kit / 64ATG14TPEG
64ATG14TPEG - Safety Data Sheet
Safety Data Sheet (SPA) ATG14 Total Kit / 64ATG14TPEG
64ATG14TPEG - Safety Data Sheet
Safety Data Sheet (ENG-GB) ATG14 Total Kit / 64ATG14TPEG
64ATG14TPEG - Safety Data Sheet
Safety Data Sheet (ENG-US) ATG14 Total Kit / 64ATG14TPEG
64ATG14TPEG - Safety Data Sheet
Safety Data Sheet (DEU) ATG14 Total Kit / 64ATG14TPEH
64ATG14TPEH - Safety Data Sheet
Safety Data Sheet (ELL) ATG14 Total Kit / 64ATG14TPEH
64ATG14TPEH - Safety Data Sheet
Safety Data Sheet (FRA-FR) ATG14 Total Kit / 64ATG14TPEH
64ATG14TPEH - Safety Data Sheet
Safety Data Sheet (ITA) ATG14 Total Kit / 64ATG14TPEH
64ATG14TPEH - Safety Data Sheet
Safety Data Sheet (SPA) ATG14 Total Kit / 64ATG14TPEH
64ATG14TPEH - Safety Data Sheet
Safety Data Sheet (ENG-GB) ATG14 Total Kit / 64ATG14TPEH
64ATG14TPEH - Safety Data Sheet
Safety Data Sheet (ENG-US) ATG14 Total Kit / 64ATG14TPEH
64ATG14TPEH - Safety Data Sheet
Choosing the right microplate reader ensures you’ll get an optimal readout. Discover our high performance reader, or verify if your lab equipment is going to be compatible with this detection technology.
Let's find your readerYou might be interested in