

Exploiting HTRF for novel drug classes: Stabilizing 14-3-3 protein-protein interactions

The Lead Discovery Center (LDC)

- The Lead Discovery Center (LDC) was established in 2008 by the technology transfer organization of the Max-Planck Society, as a novel approach to capitalize on the potential of basic research for the discovery of new therapies for diseases with high medical need.
- As an independent company with an entrepreneurial outlook, the LDC closely collaborates with research institutions, universities and industry.
 Our aim is to transform promising early-stage projects into innovative pharmaceutical leads that reach initial proof-of-concept in animals.

LDC's drug discovery network

- 80 institutes16.900 employees < 6.600 scientists
- >12.000 publications p.a.; 32 nobel laureates
- additional 7.700 young & guest scientists
- ~40 institutes with life science (biomedical) oriented research programs
- €1.73 Bio. annual research budget
- central tech transfer unit:

- ★ Max-Planck Institute
- ★ Academic Collaboration Partner
- ★ Pharma/Biotech Network

Max-Planck-Innovation

3.200 inventions1.900 contracts90 spin-offs

14-3-3 proteins

- ubiquitious in eucaryotes
- 7 isoforms in humans and higher plants
- highly conserved primary sequence
- physiological activity is mediated by direct protein-protein interactions
- key-regulators of signal transduction, cell cycle control, apoptosis, primary metabolism
- more than 500 interacting proteins described

Modulation of the target activity by 14-3-3

1) enzymatic activity

2) subcellular localization

3) ability to interact with further protein partners

Lead Discovery Center

Why stabilize the 14-3-3 interaction

Nature's example: Activation of the H⁺-ATPase PMA2 by Fusicocciniscovery Center

Structures courtesy by Christian Ottmann

A feasibility study

Pyrrolidone1

Epibestatin

Rose, R. et al: Angewandte 2010, 386, 913-919.

Fusicoccin

HTS formats for PPI assays

Prerequisites

- Homogeneous ("mix and read")
- Sensitivity
- Miniaturizable to 384well and 1536well format
- Compatible to Screening-Hardware

Common assay formats

- Fluorescence Polarization (FP)
- α-Screen
- Homogeneous Time Resolved Fluorescence (HTRF)

Assay development: Our choice HTRF

- HTRF toolbox reagents give a good flexibility for assay development
- Signal stability
- Sensitive readout in the far red region (665nm)
- Donor Em. at 620nm can be used as an internal reference
- Ratiometric readout (665/620nm)
- More than one distributor
- Good support (trouble shooting)

Assay development: HTRF assay for PMA2

• HTRF assay performed for: 14-3-3 / PMA2 ± Fusicoccin

log c [FC / nM]

- K_d: < 3 nM
- Confirmation by BIAcore: K_d: 0.85 nM

Assay development: Adaptation to screening plattform

- Scale down to 1536well format
- Total assay volume 8 μl
- Signal / Background ratio: 3
- Signal / Noise ratio: 25
- Z'-factor: 0,76

Lead Discovery Center

Identification of novel 14-3-3 PPI stabilizers

- ~150.000 compounds were screened
- 320 compounds were picked as primary hits
- 2 two scaffolds could be identified as new stabilizers for 14-3-3 PPI
- 1 scaffold was verified by BIAcore with a nM K_d

Summary

- HTRF is a robust generic assay technology used in HTS environments
- The HTRF toolbox reagents proved to be a versatile instrument to set up PPIs assays
- Modulation of 14-3-3 PPIs by small molecules is possible
- Could lead to novel ways of pharmacological intervention by targeting 14-3-3 PPIs
- Goal: Development of a screening-toolbox to probe the extensive 14-3-3 interactome for novel PPI stabilizers

Acknowledgement

Jan Eickhoff Bert Klebl

Peter Nussbaumer

Axel Choidas

Malgorzata Skwarczynska

Carsten Degenhart

Uwe Koch

Matthias Baumann

Gerd Rüther

Corinna Lechleitner

Luc Brunsveld

Christian Ottmann Lars Röglin Philipp Thiel Maria Bartel Rolf Rose

Herbert Waldmann Alfred Wittinghofer

IAPP Grant: 286418

Matthias Stein-Gerlach

MAX-PLANCK-GESELLSCHAFT

General Assembly:

Jörn Erselius **Axel Ullrich Herbert Waldmann**

Thank you!

Lead Discovery Center GmbH

Otto-Hahn-Str. 15 44227 Dortmund

Telefon +49.231.97 42 70 00 www.lead-discovery.de

Industrial Advisory Board:

Max-Planck-Innovation

Contact Data

Alexander Wolf
Assay Development and Screening
Lead Discovery Center GmbH
Otto-Hahn-Str. 15
44227 Dortmund
Germany

wolf@lead-discovery.de