MRC Technology
Centre for Therapeutics Discovery

|dentification and characterization of allosteric

modulators of GPCRs: The utility of HTRF and
incorporation into generalised screening strategies

Jeff Jerman
ELRIG — Cisbio Workshop
Sep 2012




Presentation Outline

Melanocortin receptors

Allosteric modulation of 7TM

HTS and compound profiling considerations
= Major challenges

= Suggested PAM screening strategies

Comparative Pharmacology

Summary




Melanocortin
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MC3 receptor stimulators are predicted to drive resolution of inflammation




Orthosteric vs Allosteric binding/functional modality

Class A Class B Class C
(for example, M2 mAChR) (for example, CRF1) (for example, GABA)

‘ <> Orthosteric > Allosteric |

Advantages of Positive Allosteric Modulation (PAM)
1. Improved selectivity
2. Saturability (self-limiting) biological effect

3. Temporal and spatial resolution




Agonist vs PAM Assay configurations

7TM HTS can be configured to detected both
agonism and Positive Allosteric modulation
simultaneously

= The ‘simple’ inclusion of a submaximal
(EC20) of agonist facilitates this

Response
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7TM PAM HTS/CP — Major Challenges (1)

Prediction and control of an EC20 stimulus

Endogenous melanocortin agonists are ‘sticky’ peptides (loss and/or carry over)

Changes in receptor expression/coupling can dramatically affect pEC50

The predictability and stability of the EC20 determines the sensitivity to PAMS

HTRF affords both sensitivity and stability in response
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Figure 2. During screening, PAMs are typically tested as a function of a fixed agonist concentration corresponding to ECyq. The variability inherent to the
measure of pECsy of modulation in production screening can often be under-estimated. The impact associated with using lower than anticipated agonist
concentrations over plate runs and/or days on assay sensitivity is significant. The graphs below illustrate the differential modulatory profiles obtained for
four compounds derived from the same chemotype series when tested atagonist ECs EC,gand EC,,. Both potency and efficacy values appear to be affected
to a different extent for each compound. In particular, it can be noted that one of the compounds is inactive at the lowest condition of agonist.




Automated Assay Protocol

Agonist-induced cAMP accumulation
(generic HTRF automation protocol)
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HTS Performance

Frequency Distribution
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GalR2 IP1 HTS — Agonist incubation time

@ Agonist pECg, is not dependant on incubation time
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GalR2 IP1 HTS — Detection reagent stability
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GalR2 IP1 HTS — Stability and variance of EC20

Day 1 Day 2
Agonist-induced increase in [IP1] in CHO cells Agonist-induced increase in [IP1] in CHO cells
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PAM HTS/CP — Major Challenges (2)

[Deconvolution of PAM/Agonist hits]

[Removing false positives and/or non-preferred mechanism(s)]

7

Test Compound
Test Compound alone
+ Test Compound alone
(Host cells)

Competitive Antagonist

—~
o
%c_s
E°3
O O
5S¢
o)
N

g

\ 4 \
Test Compound Leftward shift MqA assays
to determine

+ ,
EC20 of screen agonist SHTEERY Ene pqtency
(of modulation)

Test Compound

EC20 of screen agonist

PAMs
(& NAMS)

Competmve Antagonist

A

EC20 and/or MoA

Test Compound v Assay in cells with
different expression level
EC20 of alternatlve agonist U CoTpound
t

EC20 of alternative agonlst/

e

Com pet|t|ve Antagonist
(of alternative agonist)

Specificity
& selectivity




Deconvolution of PAM/Agonist modalities (Single Shot Triage)
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Deconvolution of PAM/Agonist modalities (Full Curve)

Increase in [cCAMP]; in CHO cells
stably expressing MC3 receptors
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Agonist-induced increase in [CAMP]; in CHO cells Agonist-induced increase in [CAMP]; in CHO cells
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Apparent Potency in different assay formats

PAM-induced increase in agonist-mediated [CAMP];
in CHO cells stably expressing MC3 receptors
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PAM HTS/CP — Major Challenges (3)

Differences in pharmacology between cAMP detection systems

= PAM ‘activity’ may not necessarily align between detection formats

HTRF
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Summary

HTRF provides a sensitive and stable assay from which to configure
PAM assay(s)

= /n HTS mode the stability of EC20 is pivotal to PAM sensitivity

HTS and full curve hit profiling assays can be configured to share
common (simple) robotised protocols

pEC50 of modulation (underpinned by EC20)
Partial or full leftward shifts provide texture to PAM activity

Quantitative pharmacological analyses e.qg. ETCM modelling to
dissect potentiation of affinity vs efficacy

The technology lends itself to establishing appropriate and
necessarily extensive deconvolution assays

=  Which can share a common detection platform




Summary

The accumulation nature of the signal affords greater flexibility
in compound pre-exposure

=  Arguably improving the sensitivity to slow binders (PAMS)

= Circumventing confounding kinetic issues with more
transient detection systems (Ca?*)

The pharmacology of PAMs is complex and ‘perfect’ alignment
with other (cAMP) detection technologies is likely to be rare

= A plethora of biological factors can give rise to subtle
differences in apparent PAM pharmacology
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Alternative PAM assay configurations

‘Leftward Shift’

—o—
—e— Ag Alone .....o::::'ggg& Ag Alone
o Ag+PAM[1] 0®® g0%° o° | |-®—Ag + PAMCRC
o Ag+PAM[Z] o o 0 © Ag+PAMCRC
—eo— Ag + PAM[3] S L ~@— Ag + PAM CRC
—@— Ag + PAM [4] ] ] 1 | —@— Ag + PAMCRC

(0]
o
I
[e)
o

(o]
o
I
(o]
o

N
o
L
N
o

% Response
% Response

-5 -4
log [Agonist] (M)

Agonsit CRC

+ I




Exemplar curve signatures

PAM MC3 Ag MC3 PAM 32
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