

MRC Technology
Centre for Therapeutics Discovery

Identification and characterization of allosteric modulators of GPCRs: The utility of HTRF and incorporation into generalised screening strategies

Jeff Jerman ELRIG – Cisbio Workshop Sep 2012

## **Presentation Outline**



- Melanocortin receptors
- Allosteric modulation of 7TM
- HTS and compound profiling considerations
  - Major challenges
  - Suggested PAM screening strategies
- Comparative Pharmacology
- Summary

## Melanocortin receptors



 $MC_1$ 

 $MC_2$ 

γ-MSH ACTH  $\alpha$  -MSH



Melanocyte **Endothelial Cells** Fibroblast Monocytes

> Pigmentation Inflammation

**ACTH** 



**Adrenal Cortex** Adipocytes

Steroidogenesis

 $MC_3$ 

γ-MSH **ACTH**  $\alpha$  -MSH





Macrophages Brain Gut Placenta

Cardiovascular Function, Inflammation

 $MC_4$ 

γ-MSH  $\alpha$ -MSH = ACTH  $MC_5$ 

ACTH





Brain

**Feeding Control** (obesity)

γ-MSH

 $\alpha$  -MSH





Brain **Peripheral Tissues** 

Control of the Sebaceous Gland

MC3 receptor stimulators are predicted to drive resolution of inflammation

## Targeting novel compound mechanism of action



Orthosteric vs Allosteric binding/functional modality





- Advantages of Positive Allosteric Modulation (PAM)
  - 1. Improved selectivity
  - 2. Saturability (self-limiting) biological effect
  - 3. Temporal and spatial resolution

# Agonist vs PAM Assay configurations



- 7TM HTS can be configured to detected both agonism and Positive Allosteric modulation simultaneously
  - The 'simple' inclusion of a submaximal (EC20) of agonist facilitates this





## 7TM PAM HTS/CP – Major Challenges (1)



### Prediction and control of an EC20 stimulus

- Endogenous melanocortin agonists are 'sticky' peptides (loss and/or carry over)
- Changes in receptor expression/coupling can dramatically affect pEC50
- The predictability and stability of the EC20 determines the sensitivity to PAMS
- HTRF affords both sensitivity and stability in response





Figure 2. During screening, PAMs are typically tested as a function of a fixed agonist concentration corresponding to  $EC_{20}$ . The variability inherent to the measure of  $pEC_{50}$  of modulation in production screening can often be under-estimated. The impact associated with using lower than anticipated agonist concentrations over plate runs and/or days on assay sensitivity is significant. The graphs below illustrate the differential modulatory profiles obtained for four compounds derived from the same chemotype series when tested at agonist  $EC_{5}$ ,  $EC_{10}$  and  $EC_{20}$ . Both potency and efficacy values appear to be affected to a different extent for each compound. In particular, it can be noted that one of the compounds is inactive at the lowest condition of agonist.

## **Automated Assay Protocol**





# HTS Performance





## **HTS Performance**







% Activity Distribution



109760 compounds @ 10mM (1% DMSO)

Mean  $Z' = 0.84 (\pm 0.06)$ 

Low Control %CV =  $5.3 (\pm 2.7)$ 

High Control %CV= 3.6 (±1.5)

| Cutoff(%) | # Hits | % HR |
|-----------|--------|------|
| 40        | 912    | 0.83 |
| 50        | 520    | 0.47 |
| 60        | 269    | 0.25 |
| 70        | 147    | 0.13 |
| 80        | 62     | 0.06 |
| 90        | 12     | 0.01 |
| 100       | 2      | 0.00 |

## GalR2 IP1 HTS – Agonist incubation time





- Agonist pEC<sub>50</sub> is not dependant on incubation time (within these limits)
- This suggests an EC<sub>20</sub> should be stable throughout an HTS run/day

Galanin-induced IP1 accumulation in CHO ( $G\alpha 16$ ) cells stably expressing hGalR2



## GalR2 IP1 HTS – Detection reagent stability





## GalR2 IP1 HTS – Stability and variance of EC20



Day 1

Agonist-induced increase in [IP1] in CHO cells stably expressing GalR2 receptors



Day 2

Agonist-induced increase in [IP1] in CHO cells stably expressing GalR2 receptors



- 5nM Galanin produces a robust and stable response (~EC20)
- CVs <10%, window 2.5 fold, Z' 0.6 0.7

## PAM HTS/CP – Major Challenges (2)



- Deconvolution of PAM/Agonist hits
- Removing false positives and/or non-preferred mechanism(s)



## Deconvolution of PAM/Agonist modalities (Single Shot Triage)





## Deconvolution of PAM/Agonist modalities (Full Curve)





# Agonist-induced increase in [cAMP]<sub>i</sub> in CHO cells stably expressing MC3 receptors (leftward shift)



Agonist-induced increase in  $[cAMP]_i$  in CHO cells stably expressing  $\beta_2$  -Adrenoceptors (leftward shift)



# Agonist-induced increase in [cAMP]<sub>i</sub> in CHO cells stably expressing MC3 receptors (leftward shift)



#### Shared robotic HTRF protocols facilitate;

- Assay in both single-point and fullcurve mode (& transitions between)
- Flexibility in assay design (pEC50<sub>mod</sub> vs leftward shift)
- Simultaneous 'counter' assay (Ag vs PAM, off-target selectivity)

## Apparent Potency in different assay formats

Cmpd 2

Cmpd 3

Cmpd 7



PAM-induced increase in agonist-mediated [cAMP]<sub>i</sub> in CHO cells stably expressing MC3 receptors



Moderate pEC50 of modulation (EC20 mode) translates to very effective leftward shift

Agonist-induced increase in [cAMP]<sub>i</sub> in CHO cells stably expressing MC3 receptors (leftward shift)



## PAM HTS/CP – Major Challenges (3)



- Differences in pharmacology between cAMP detection systems
  - PAM 'activity' may not necessarily align between detection formats



\*GeneBLAzer; β-lactamase coupled to a cyclic AMP response element (CRE)

### Summary



- HTRF provides a sensitive and stable assay from which to configure PAM assay(s)
  - In HTS mode the stability of EC20 is pivotal to PAM sensitivity
- HTS and full curve hit profiling assays can be configured to share common (simple) robotised protocols
  - pEC50 of modulation (underpinned by EC20)
  - Partial or full leftward shifts provide texture to PAM activity
  - Quantitative pharmacological analyses e.g. ETCM modelling to dissect potentiation of affinity vs efficacy
- The technology lends itself to establishing appropriate and necessarily extensive deconvolution assays
  - Which can share a common detection platform

### Summary



- The accumulation nature of the signal affords greater flexibility in compound pre-exposure
  - Arguably improving the sensitivity to slow binders (PAMS)
  - Circumventing confounding kinetic issues with more transient detection systems (Ca<sup>2+</sup>)
- The pharmacology of PAMs is complex and 'perfect' alignment with other (cAMP) detection technologies is likely to be rare
  - A plethora of biological factors can give rise to subtle differences in apparent PAM pharmacology

# Acknowledgments





- Ahmad Kamal
- Jenny Cook
- Rachel Forfar
- Debra Taylor
- Hayley Jones
- Paul Wright
- Puneet Khurana



### **University of Bristol**

David Wynick



### William Harvey Research Institute, Queen Mary University

- Mauro Perretti
- Trinidad Montero-Melendez

# Alternative PAM assay configurations









### 'EC20'





## Exemplar curve signatures



### PAM MC3

'Clean' PAM



Ag MC3





ΡΑΜ β2





PAM with (allo) agonism

MCR3 PAM cAMP HTRF - Plate 1, Cpd 13 100-90-80-70-50-40-30-20-10--20--30--9

MCR3 AG cAMP HTRF - Plate 1, Cpd 13



ADRB2 cAMP HTRF - Plate 1, Cpd 13



Non specific compound (receptor and or mechanism)



Log [M]



MCR3 AG cAMP HTRF - Plate 4, Cpd 11



ADRB2 cAMP HTRF - Plate 4, Cpd 11

