Phospho-SMAD2 (Ser465/427) cellular kit

The phospho-SMAD2 (Ser465/467) kit enables the cell-based quantitative detection of SMAD2 phosphorylated on Ser465/467, as a readout of the TGFb pathway.

See more
  • All inclusive kit
  • High sensitivity
  • Rapid
  • Low sample consumption

The phospho-SMAD2 (Ser465/467) kit enables the cell-based quantitative detection of SMAD2 phosphorylated on Ser465/467, as a readout of the TGFb pathway.

-
In stock

Overview

This HTRF cell-based assay enables the rapid, quantitative detection of SMAD2 phosphorylated at Serine 465/467, as a readout of TGF-ß signaling activity.

TGF-ß receptors directly activate SMAD2 by phosphorylation at Ser465/467, causing it to translocate to the nucleus and regulate gene expression involved in apoptosis, migration, and differentiation, as well as in immune/inflammatory responses and extracellular matrix remodeling.

Phospho-SMAD2 (Ser465/467) assay principle

The Phospho-SMAD2 (Ser465/4267) assay measures SMAD2 when phosphorylated at Ser465/4267. Unlike Western Blot, the assay is entirely plate-based and does not require gels, electrophoresis, or transfer.

The Phospho-SMAD2 (Ser465/4267) assay uses 2 labeled antibodies: one with a donor fluorophore, the other with an acceptor. The first antibody is selected for its specific binding to the phosphorylated motif on the protein, and the second for its ability to recognize the protein independently of its phosphorylation state. Protein phosphorylation enables an immune-complex formation involving both labeled antibodies and which brings the donor fluorophore into close proximity to the acceptor, thereby generating a FRET signal. Its intensity is directly proportional to the concentration of phosphorylated protein present in the sample, and provides a means of assessing the protein’s phosphorylation state under a no-wash assay format.

Phospho-SMAD2 (Ser465/467) 2-plate assay protocol

The 2 plate protocol involves culturing cells in a 96-well plate before lysis, then transferring lysates to a 384-well low volume detection plate before adding Phospho-SMAD2 (Ser465/467) HTRF detection reagents.

This protocol enables the cells' viability and confluence to be monitored.

Phospho-SMAD2 (Ser465/467) 2-plate assay protocol

Detection of Phosphorylated SMAD2 (Ser465/467) with HTRF reagents can be performed in a single plate used for culturing, stimulation, and lysis. No washing steps are required.

This HTS designed protocol enables miniaturization while maintaining robust HTRF quality.

Validation on the mouse cell lines C2C12 and human cell line HeLa

HeLa and C2C12 cell lines were plated (100,000 cells/well) and cultured overnight in complete culture medium, 37°C - 5% CO2. The day after, medium was removed and the cells were incubated for 4h at 37°C - 5% CO2 with reduced culture medium (0.5% FBS). After incubation, cells were treated with increasing concentrations of TGF-ß1 for 30 minutes at 37°C - 5% CO2. After medium removal, the cells were then lysed with 50 µL of supplemented lysis buffer #1 for 30 minutes at RT under gentle shaking, and 16 µL of lysate were transferred twice over into a low volume white microplate before the addition of 4 µL of the HTRF phospho-SMAD2 or total SMAD2 detection antibodies.

The HTRF signal was recorded after an overnight incubation. In both lines, TGF-ß1 promoted the activation of SMAD2 by phosphorylation on Ser465/467, whereas the expression level of the protein remained fairly stable.

TGF-ß signaling pathway

TGF-ß signaling is mediated by complexes of TßRI and TßRII, which activate intracellular SMAD3 and SMAD2 by phosphorylation. The binding of the TGF-ß ligand on TßRII triggers the recruitment of TßRI into the ligand-receptor complex. TßRII autophosphorylates, then transphosphorylates TßRI. Activated TßRI in turn phosphorylates SMAD2 on Ser465 and Ser467, enabling its oligomerization with SMAD4. This complex then translocates into the nucleus, and acts as a transcription factor with coactivators and corepressors to regulate the expression of multiple genes involved in cell growth, apoptosis, proliferation, migration, and differentiation, as well as in extracellular matrix remodeling and immune/inflammatory responses. Inhibitory SMAD6 and SMAD7 are involved in feedback inhibition of the pathway.

Simplified pathway dissection with HTRF phospho-assays and CyBi-felix liquid handling

Analyse of PI3K/AKT/mTor translational control pathway - Application Notes

Cisbio lysis buffer compatibility

Cell Signaling: Biomarkers, Phospho- & total-protein Assays - Flyers

HTRF cellular phospho-protein assays

physiologically relevant results fo fast flowing research - Flyers

Save time and money

Switch to HTRF assays - Flyers

Species compatibility

Cell Signaling: Biomarkers, Phospho- & total-protein assays - Flyers

Side-by-side comparison of HTRF, Western Blot, ELISA and AlphaScreen® SureFire®

Do all cell-based kinase assays perform similarly? - Posters

Universal HTRF® phospho-protein platform: from 2D, 3D, primary cells to patient derived tumor cells

Analysis of a large panel of diverse biological samples and cellular models - Posters

HTRF phospho assays reveal subtle drug induced effects in tumor-xenografts

Tumor xenograft analysis: HTRF versus Western blot - Application Notes

HTRF cell-based phospho-protein data normalization

Valuable guidelines for efficiently analyzing and interpreting results - Application Notes

HTRF phospho-total lysis buffer: a universal alternative to RIPA lysis buffers

Increased flexibility of phospho-assays - Application Notes

Best practices for analyzing brain samples with HTRF® phospho assays for neurosciences

Insider Tips for successful sample treatment - Technical Notes

HTRF Alpha-tubulin Housekeeping kit

Properly interpret your compound effect - Application Notes

HTRF assays facilitate investigation of the TGFB/SMAD/a-SMA signaling axis in liver fibrosis

Benefits of using HTRF assays to characterize liver fibrosis - Technical Notes

Optimize your HTRF cell signaling assays on tissues

HTRF and WB compatible guidelines - Technical Notes

Key guidelines to successful cell signaling experiments

Mastering the art of cell signaling assays optimization - Guides

HTRF phospho-assays reveal subtle drug-induced effects

Detailed protocol and direct comparison with WB - Posters

Best practices for analyzing tumor xenografts with HTRF phospho assays

Protocol for tumor xenograft analysis with HTRF - Technical Notes

Webinar: NASH - Fibrosis Research and Drug Discovery

Featuring a panel of experts - Videos

How to run a cell based phospho HTRF assay

What to expect at the bench - Videos

Unleash the potential of your phosphorylation research with HTRF

Unmatched ease of use, sensitivity and specificity assays - Videos

Cisbio Product Catalog 2019

All your HTRF assays in one document! - Catalog

A guide to Homogeneous Time Resolved Fluorescence

General principles of HTRF - Guides

A collection of the most important NAFLD pathways

Useful overview of today’s NAFLD knowledge - Guides

tab6