Evaluation and validation of the HTRF insulin assay as a replacement for a commercially available ELISA

Jeffrey Hixon
Elixir Pharmaceuticals
Cambridge, MA USA

4th Annual Symposium
HTRF in Drug Discovery
Avignon, France – September, 2008
Elixir Pharmaceuticals is a pharmaceutical company focused on the discovery, development and commercialization of novel pharmaceuticals for the treatment of metabolic diseases and obesity.
Type II Diabetes

- >180M people worldwide have diabetes
- Type II accounts for 80-95% of all cases
- Frequently undiagnosed
- Sixth leading cause of death by disease
 - Leading cause of kidney disease
 - Leading cause of non-traumatic limb amputations
 - Leading cause blindness among young adults
Type II Diabetes

- Complicated metabolic disorder

- Characterized by:
 - Loss of sensitivity to insulin
 - Decrease in the body’s ability to produce insulin
 - Overproduction of glucose by the liver
 - Uncontrolled diabetes leads to abnormally high blood sugar levels
 - A condition known as hyperglycemia

- Six classes of drugs approved for treatment
 - Still unmet medical need for diabetes / weight control drugs
Insulin

- Produced in the beta islet cells of the pancreas
- Stimulate uptake of glucose from the blood
- Critical in the control of glucose homeostasis
- Insulin deficiency is the hallmark of type I diabetes
- Hyperinsulinemia and insulin resistance characterize type II diabetes

- Diabetes research often involves rat and mouse models for *in vivo* studies
 - Diet induced obesity (DIO) model: animals fed high fat diet to induce an imbalance in blood glucose and insulin levels
 - Glucose tolerance test (GTT): where a bolus of glucose is administered and plasma insulin and glucose levels are measured over time

Key to diabetes research is the ability to measure insulin effectively and accurately
Key to diabetes research is the ability to measure insulin effectively and accurately

- Traditional assays for insulin
 - Radio-immunoassay (RIA)
 - Enzyme linked immunosorbant assay (ELISA)

- Cisbio’s HTRF insulin assay
Insulin ELISA

- 96 well antibody coated plate
- Dispense 95μl sample diluent
- Pipette 5μl plasma sample or insulin standard
- Incubate 2 hours at 4C
- Wash 5 times with wash buffer
- Dispense 100μl anti-insulin conjugate
- Incubate 30 min at room temperature
- Wash 5 times with wash buffer
- Dispense 100μl enzyme substrate solution
- Incubate 40 min at room temperature
- Stop reaction by adding stop solution
- Measure A₄₅₀ and subtract A₆₃₀ values
- Calculate insulin concentrations using the standard curve
Cisbio’s HTRF insulin assay

- Dispense 5μl sample or insulin standard
- Dispense 2.5μl each of anti-insulin Ab-cyptate and anti-insulin Ab-XL665
- Incubate 2 hours at room temperature
- Read on an HTRF compatible reader
- Calculate insulin concentration using the standard curve
Assay comparison

<table>
<thead>
<tr>
<th></th>
<th>ELISA</th>
<th>HTRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample volume required</td>
<td>5μl</td>
<td>5μl</td>
</tr>
<tr>
<td>Standard curve range</td>
<td>0 - 6.4ng/ml</td>
<td>0 - 10ng/ml</td>
</tr>
<tr>
<td>Plate format</td>
<td>96 well</td>
<td>384 well</td>
</tr>
<tr>
<td>Miniaturizable</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Total # steps to perform assay</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Total time to perform assay</td>
<td>4+hrs</td>
<td>~2hrs</td>
</tr>
<tr>
<td>Wash steps</td>
<td>10</td>
<td>zero</td>
</tr>
<tr>
<td>Cost per well (US$)</td>
<td>$3.46</td>
<td>$0.13</td>
</tr>
<tr>
<td>Specificity</td>
<td>r, m</td>
<td>r, m, p, h</td>
</tr>
</tbody>
</table>
Comparison of ELISA and HTRF standard curves

ELISA insulin standard curve

- **OD (450nm-630nm)** vs. **Insulin (ng/ml)**
 - Values range from 0.00 to 1.50 for OD, and from 0 to 7 for Insulin.

HTRF insulin standard curve

- **Ratio** vs. **Insulin (ng/ml)**
 - Values range from 0 to 1500 for Ratio, and from 0 to 10 for Insulin.

Both curves show a linear relationship between the measured values and the insulin concentrations.
Miniaturization assessment

Insulin standard curves
Scaling assay volume

Ratio

Insulin (ng/ml)

- 20ul
- 15ul
- 10ul
- 5ul
- 3ul
- 2ul
Rodent and Human insulin standard curves

Rat/mouse insulin standard curve

- Ratio vs. [Insulin] ng/mL

Human insulin standard curve

- Ratio vs. [Insulin] ng/mL

- 20uL assay
- 15uL assay
- 10uL assay
Time course in variable volume assay

Rat / mouse insulin HTRF assay
10 ng/ml insulin

Human insulin HTRF Assay
10 ng/ml insulin
Replicate standard curves

Rat / mouse insulin standard curves

<table>
<thead>
<tr>
<th>Insulin standard concentration (ng/ml)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.4</td>
</tr>
<tr>
<td>0.15625</td>
<td>3.6</td>
</tr>
<tr>
<td>0.3125</td>
<td>4.7</td>
</tr>
<tr>
<td>0.625</td>
<td>4.4</td>
</tr>
<tr>
<td>1.25</td>
<td>4.7</td>
</tr>
<tr>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>10</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Variability testing on unknown plasma sample

- Unknown Plasma sample

CV = 3.3%
Insulin measurement in pancreatic islets

Glucose Dose Response of Insulin Secretion in Pancreatic Islets isolated from mice (n=3)

![Graph showing glucose dose response of insulin secretion](#)
Ghrelin is a key metabolic regulator

- Peptide hormone
- Secreted from stomach
- Interacts with receptors in the brain and periphery
- Controls and integrates a variety of metabolic functions
- Part of an intricate neuroendocrine system
Ghrelin signaling as a validated target in metabolic disease

- Ghrelin KO and ghrelin receptor KO mice resist diet-induced obesity (DIO)
- KO mice resist decline in metabolic parameters when placed on a high fat diet
- Block of ghrelin inhibits body wt gain, food intake and fat mass content in rodents
- Vaccination against ghrelin causes lack of weight gain and increased relative fat free mass in rodents
- A small molecule ghrelin antagonist inhibits body weight gain and insulin levels in DIO mice
Favorable metabolic profile in ghrelin receptor KO mice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GhrR +/-</th>
<th>GhrR +/-</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td>46.2 ± .8</td>
<td>38.9 ± 1.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>118.6 ± 4.7</td>
<td>98.6 ± 4.3</td>
<td><0.01</td>
</tr>
<tr>
<td>Insulin (ng/ml)</td>
<td>.97 ± .10</td>
<td>.53 ± .05</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>7.38 ± .92</td>
<td>3.34 ± .43</td>
<td><0.001</td>
</tr>
<tr>
<td>CLAMP (GI R, mg/Kg/min)</td>
<td>26.7 ± 2.4</td>
<td>37.3 ± 3.6</td>
<td><0.05</td>
</tr>
<tr>
<td>% HbA1c</td>
<td>4.20 ± .10</td>
<td>3.93 ± .08</td>
<td><0.05</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>101.1 ± 3.7</td>
<td>103.2 ± 5.0</td>
<td>n.s.</td>
</tr>
<tr>
<td>TC/HDL-C</td>
<td>1.22 ± .03</td>
<td>1.14 ± .02</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Improved insulin sensitivity

From: Longo et al [2008] Regul Pept. 150:55
Dramatic improvement in insulin sensitivity in both male and female DIO GhrR KO mice

Male DIO GhrR KO vs WT mice

GTT-glucose (± SEM)

![Graph showing blood glucose levels for male DIO GhrR KO vs WT mice](image1)

GTT-insulin (± SEM)

![Graph showing insulin levels for male DIO GhrR KO vs WT mice](image2)

Female DIO GhrR KO vs WT mice

GTT-glucose (± SEM)

![Graph showing blood glucose levels for female DIO GhrR KO vs WT mice](image3)

GTT-insulin (± SEM)

![Graph showing insulin levels for female DIO GhrR KO vs WT mice](image4)
GhrR antagonism recapitulates the insulin sensitivity of HFD fed GhrR KO mice

DAY 28

GTT-glucose

![Graph showing glucose levels](image)

GTT-insulin

![Graph showing insulin levels](image)

DAY 56

GTT-glucose

![Graph showing glucose levels](image)

GTT-insulin

![Graph showing insulin levels](image)

- Decreased plasma glucose excursion
- Dramatically decreased insulin requirement
Conclusion

The HTRF insulin assay allows:

- Seamless migration from ELISA to HTRF format
- Extremely cost effective assay compared to ELISA
 - ~4% of the cost
- Comparable sample requirements
- Time savings over the ELISA
 - >2 hours savings
- Assay volumes scalable to screening levels
- Easy measurement of insulin levels across multiple systems
 - *In vivo*: rodent and human plasma or serum samples
 - *In vitro*: pancreatic β cells
Acknowledgments

Elixir:
Tom McDonagh
Peter DiStefano, CSO

In vivo team:
Brad Geddes
Elizabeth Govek
Anna Nolan
Ken Longo
Yong Qi

Cisbio - US:
Diane Bowers
Chris Balagtas
Amy Card
Anna Sinsigalli